

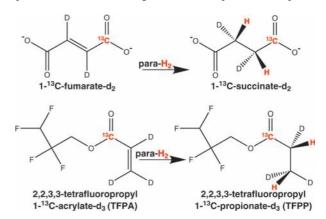
Published on Web 02/16/2009

Hyperpolarized ¹H NMR Employing Low γ Nucleus for Spin Polarization Storage

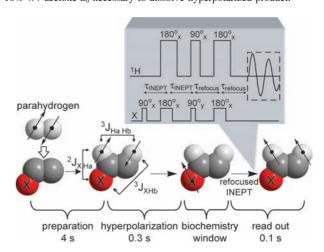
Eduard Y. Chekmenev,^{†,‡} Valerie A. Norton,[‡] Daniel P. Weitekamp,[‡] and Pratip Bhattacharya*,[†] Enhanced Magnetic Resonance Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, and A. A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

Received December 9, 2008; E-mail: pratip@hmri.org

The PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment)^{1,2} and DNP (Dynamic Nuclear Polarization)³ methods efficiently hyperpolarize biologically relevant nuclei such as ¹H, ³¹P, ¹³C, ¹⁵N achieving signal enhancement by a factor of $\sim 100\,000$ on currently utilized MRI scanners. Recently, many groups have demonstrated the utility of hyperpolarized MR in biological systems using hyperpolarized ¹³C biomarkers with a relatively long spin lattice relaxation time T_1 on the order of tens of seconds.⁴⁻⁷ Moreover, hyperpolarized ¹⁵N for biomedical MR has been proposed due to even longer spin lattice relaxations times.8 An additional increase of up to tens of minutes in the lifetime of hyperpolarized agent in vivo could be achieved by using the singlet states of low gamma (γ) nuclei. However, as NMR receptivity scales as γ^3 for spin $\frac{1}{2}$ nuclei, direct NMR detection of low γ nuclei results in a lower signal-to-noise ratio compared to proton detection. While protons are better nuclei for detection, short spin lattice relaxation times prevent direct ¹H hyperpolarized MR in biomedical applications.


Here, we demonstrate the utility of 13 C for spin storage of hyperpolarization followed by 1 H detection using INEPT, 10 which theoretically can provide up to an $\sim (\gamma_{1H}/\gamma_X)^2$ gain in sensitivity in hyperpolarized biomedical MR. Specifically, we hyperpolarized the 13 C site of two well studied molecules, 1^{-13} C-succinate- d_2 ^{5,11} and 2,2,3,3-tetrafluoropropyl 1^{-13} C-propionate- d_3 (TFPP), by PASADENA (Figure 1). Both molecules are accessible from unsaturated precursors containing a double bond by molecular cis addition of parahydrogen. Hyperpolarized succinate^{5,11} can be potentially exploited as a metabolic biomarker of cancer, while hyperpolarized TFPP has been shown to be a specific binder to lipids with a unique chemical shift signature in the lipid bound state¹² potentially useful for plaque imaging. 13

Parahydrogen addition and transfer of spin order to 13 C has been described previously. 5,14 A home-built PASADENA polarizer was employed to hydrogenate 2,2,3,3-tetrafluoropropyl 1^{-13} C-acrylate- d_3 (TFPA) to yield hyperpolarized TFPP and 1^{-13} C-fumarate- d_2 (CIL, Andover, MA) to yield hyperpolarized 1^{-13} C-succinate- d_2 in deuterated solvent. The spin order transfer was performed using an untuned saddle coil at 1.76 mT utilizing the heteronuclear spin order transfer pulse sequence described by Goldman and Johannesson and was tailored to the hetero- and homonuclear J coupling of propionate 14,16 for TFPP and succinate at pH 11 (Figure 2). 5


In vitro 1-¹³C succinate spin lattice relaxation time T_1 is 105 ± 1 s in D₂O at pH 11, and in vivo T_1 is in excess of 43 s at 4.7 T, which is significantly longer than the previously published values at pH 3.⁵ In vitro 1-¹³C TFPP $T_1 = 67 \pm 1$ s in deuterated medium, and in vivo T_1 is in excess of 16 s at 4.7 T.¹³ Such long spin lattice relaxation times provide an efficient storage of spin polarization in long-lived low γ nuclear spin states, which is exemplified here by ¹³C TFPP and

succinate. The principal motivation for development of long-lived nuclear spin states is their utility to monitor biochemical pools *in vivo* such as stable isotope enrichment of metabolic events or receptor binding. NMR signal detection utilizing polarization transfer from long-lived low γ nuclear spin states to *J*-coupled protons provides a potential to further increase the MR signal in such studies (Figure 2) utilizing the strategy of two sequential polarization transfers.¹⁷

In one experiment, 2.4 mL of 6.2 mM 1^{-13} C-succinate- d_2 were hyperpolarized at the 13 C site to 10.7%. Hyperpolarization was then kept on 13 C for 70 s. During this time, the polarized sample was

Figure 1. Cis molecular addition of parahydrogen to 1^{-13} C-fumarate- d_2 to produce 1^{-13} C-succinate- d_2 and cis molecular addition of parahydrogen to TFPA to produce TFPP. The catalytic reaction was carried out at 60 °C in D₂O with reactant concentrations of 3–6 mM. TFPP aqueous solution used 10% v/v acetone- d_6 necessary to dissolve hyperpolarized product.

Figure 2. The experimental diagram of molecular cis addition of parahydrogen followed by hyperpolarization of X nucleus exemplified by ¹³C, polarization storage on X nucleus (potentially allowing monitoring of biochemical events on the time scale of minutes) followed by polarization transfer back to more sensitive protons for NMR detection.

[†] Huntington Medical Research Institutes.

^{*} California Institute of Technology

transferred from a low magnetic field polarizer operating at 1.76 mT to a 4.7 T animal MR scanner. The ¹³C polarization decayed from 10.7% to 5.5% corresponding to the final ¹³C signal enhancement by a factor of 13 500. Then the refocused INEPT pulse sequence 10 with $\tau_{\rm INEPT} =$ 34 ms and $\tau_{\rm refocus} =$ 32 ms (Figure 2) was used to transfer polarization from 13 C to protons within $1-^{13}$ C-succinate- d_2 (Figure 3A) and 3B). We found that the two protons were successfully hyperpolarized corresponding to 41% polarization transfer efficiency and 1350fold ¹H NMR signal enhancement per two methylene protons. In a separate experiment, 2.4 mL of 2.9 mM TFPP were polarized to 14%, and the hyperpolarization was stored on the 1-13C site for 24 s, during which the polarization decayed to 9.5% corresponding to a final signal enhancement of 23 300-fold at this site (Figure 3E). The delays of the refocused INEPT were $\tau_{\text{INEPT}} = 20 \text{ ms}$ and $\tau_{\text{refocus}} = 16 \text{ ms}$. The combined intensity of the three NMR lines corresponding to four hydrogen atoms (Figure 3F) was enhanced by a factor of 2930, corresponding to the 50% polarization transfer efficiency by the refocused INEPT sequence.

To quantify the degree of hyperpolarization, we used the reference of a single scan spectrum of thermally polarized 100% natural abundance ethanol (Figure 3A) and 3 M sodium 1-13Cacetate (Figure 3B) at 4.7 T using the formula:

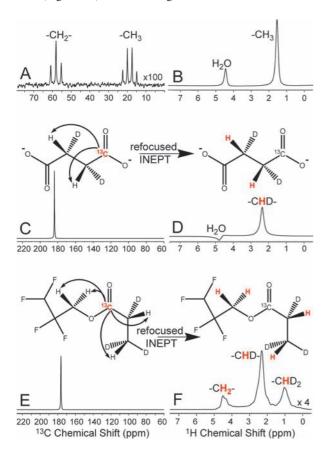


Figure 3. (A) ¹³C reference spectrum of 2.8 mL of 17 M ethanol with 188 mM ¹³C concentration per site. (B) ¹H NMR spectrum of 2.8 mL of 3 M sodium ¹³C-acetate in D₂O. (C) ¹³C NMR spectrum of hyperpolarized 6.2 mM 1- 13 C-succinate- $d_{2,3}$, 13 C polarization of 5.5% after being stored for 70 s, $T_1 = 105$ s, the spectrum is acquired using a 12° excitation pulse. (D) ¹H NMR spectrum of hyperpolarized 6.2 mM 1^{-13} C-succinate- $d_{2,3}$ where net ¹H signal enhancement is 1350-fold with 41% spin polarization transfer efficiency. (E) ¹³C NMR spectrum of hyperpolarized 2.9 mM TFPP. ¹³C polarization is 9.5% after being stored for 24 s, $T_1 = 67$ s. The spectrum is acquired using a 12° excitation pulse. (F) ¹H NMR spectrum of hyperpolarized 2.9 mM TFPP where net ¹H signal enhancement is 2930fold with 51% efficiency.

$$\%P_{\rm X} = \frac{\chi_{\rm ref}}{\chi_{\rm expt}} \cdot \frac{S_{\rm expt}}{S_{\rm ref}} \cdot \frac{P_{\rm X}^{\rm o}}{\sin \theta} \cdot 100\%$$

where $P_{\rm X}^{\rm o}$ is the nuclear polarization at equilibrium at 298 K and 4.7 T, according to the Boltzmann distribution, θ is the angle of the detection pulse, χ_{ref} and χ_{expt} are the molar concentrations of sites in the reference and the experimental molecule, respectively, and S_{ref} and S_{expt} are the signal from the reference and experimental molecular sites, respectively. Under the experimental conditions, P_{13C}^{o} is 246 600^{-1} and $P_{\rm 1H}^{\rm o}$ is 62 000⁻¹. The achieved % $P_{\rm 1H}$ was 2.2% for 1-¹³C-succinate- d_2 and 4.8% for TFPP. The efficiency of the polarization transfer from 13 C to 1 H reported here, 41% for 1- 13 C-succinate- d_2 and 50% for TFPP, is a ratio between the ¹H polarization detected after the transfer and ¹³C polarization as measured by a 12° excitation pulse before the INEPT transfer. While the efficiency of the polarization transfer was 50% or below, hyperpolarized protons are inherently 15.8-fold more sensitive compared to hyperpolarized ¹³C. As a result, proton detection of hyperpolarized 1- 13 C-succinate- d_2 and TFPP increased the overall sensitivity by a factor of 6.5 and 7.9, respectively.

The method demonstrated herein can potentially be applied to these and other hyperpolarized 13C metabolic contrast agents in vivo including hyperpolarized pyruvate, ¹⁸ lactate, bicarbonate, ⁶ alanine, glutamine,⁷ and choline.⁸ More importantly, using this approach, hyperpolarized ¹⁵N MR would become an attractive biomedical tool due to the much longer spin lattice relaxation time owing to low γ , but now with the added advantage of more sensitive detection using proton NMR ($\gamma^2_{15N} \approx \gamma^2_{1H}/100$). Furthermore, proton imaging, localized spectroscopy, and chemical shift imaging (CSI) will allow improved spatial resolution by γ_{1H}/γ_X in each dimension at a given gradient strength.

Acknowledgment. We thank Drs. Brian D. Ross and William H. Perman and the following for funding: NIH 1K99CA134749-01, R01 CA 122513, 1R21 CA118509, Rudi Schulte Research Institute, James G. Boswell Fellowship, AHA, American Brain Tumor Association, Beckman Institute, Tobacco Related Disease Research Program 16KT-0044, Prevent Cancer Foundation.

References

- Bowers, C. R.; Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645–2648.
 Bowers, C. R.; Weitekamp, D. P. J. Am. Chem. Soc. 1987, 109, 5541–
- Abragam, A.; Goldman, M. Rep. Prog. Phys. 1978, 41, 395-467.
- Golman, K.; in't Zandt, R.; Thaning, M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11270-11275.
- Chekmenev, E. Y.; Hovener, J.; Norton, V. A.; Harris, K.; Batchelder, L. S.; Bhattacharya, P.; Ross, B. D.; Weitekamp, D. P. J. Am. Chem. Soc. 2008, 130, 4212–4213.
- Gallagher, F. A.; Kettunen, M. I.; Day, S. E.; Hu, D. E.; Ardenkjaer-Larsen, J. H.; in't Zandt, R.; Jensen, P. R.; Karlsson, M.; Golman, K. Nature 2008,
- Gallagher, F. A.; Kettunen, M. I.; Day, S. E.; Lerche, M.; Brindle, K. M. Magn. Reson. Med. 2008, 60, 253-257
- Gabellieri, C.; Reynolds, S.; Lavie, A.; Payne, G. S.; Leach, M. O.; Eykyn, T. R. *J. Am. Chem. Soc.* **2008**, *130*, 4598–4599.
- Pileio, G.; Carravetta, M.; Hughes, E.; Levitt, M. H. J. Am. Chem. Soc. **2008**, *130*, 12582–12583.
- (10) Morris, G. A.; Freeman, R. J. Am. Chem. Soc. 1979, 101, 760–762.
 (11) Bhattacharya, P.; Chekmenev, E. Y.; Perman, W. H.; Harris, K. C.; Lin, A. P.; Noron, V. A.; Tan, C. T.; Ross, B. D.; Weitekamp, D. P. J. Magn. Reson. 2007, 186, 150-155
- (12) Chekmenev, E. Y.; Chow, S. K.; Tofan, D.; Weitekamp, D. P.; Ross, B. D.; Bhattacharya, P. *J. Phys. Chem. B* **2008**, *112*, 6285–6287.

 (13) Chekmenev, E. Y.; et al. *Angew. Chem., Int. Ed.*, submitted.

 (14) Bhattacharya, P.; Harris, K.; Lin, A. P.; Mansson, M.; Norton, V. A.;
- Perman, W. H.; Weitekamp, D. P.; Ross, B. D. *Magn. Reson. Mat. Phys. Biol. Med.* **2005**, *18*, 245–256.
- Goldman, M.; Johannesson, H. C. R. Physique 2005, 6, 575-581.
- (16) Goldman, M.; Johannesson, H.; Axelsson, O.; Karlsson, M. C. R. Chimie
- **2006**, *9*, 357–363. Aime, S.; Gobetto, R.; Reineri, F.; Canet, D. *J. Chem. Phys.* **2003**, *119*, 8890-8896
- Golman, K.; in't Zandt, R.; Lerche, M.; Pehrson, R.; Ardenkjaer-Larsen, J. H. Cancer Res. 2006, 66, 10855-10860.

JA809634U